Polyphosphinoylmethanide complexes of tin(II). Crystal and molecular structure of $\{[(C_6H_5)_2PO]_3C\}_2Sn$

Daniel L. Reger*, Steven J. Knox and Lukasz Lebioda

Department of Chemistry, University of South Carolina, Columbia, SC 29208 (U.S.A.)

(Received June 9, 1990; revised July 19, 1990)

Abstract

The reaction of SnCl₂ and two equiv. of Na{[$(C_6H_5)_2PO$]₃C} yields {[$(C_6H_5)_2PO$]₃C}₂Sn (1). The solid state structure of 1 has been determined by X-ray crystallography: trigonal, space group $R\bar{3}c$, with a = 29.216(3), c = 42.120(5) Å, V = 31.136 Å³ and Z = 18. Both potentially tridentate [$(C_6H_5)_2PO$]₃C-ligands are coordinated to the tin atom in a bidentate manner. The coordination geometry about tin is a pseudo trigonal bipyramid. Each phosphinoylmethanide ligand occupies an axial and equatorial site with the remaining equatorial site filled by the lone pair on tin. The reaction of Na{[(C_6H_5)_2PO]_2CH} and SnCl₂ yields the analogous complex {[(C_6H_5)_2PO]_2CH}₂Sn (2).

Introduction

We have recently been exploring the chemistry of the metals in groups 13 and 14 using anionic, chelating ligands. Our initial interest has been with the poly(pyrazolyl)borate family of ligands [1]. An interesting feature of this ligand family is the potential to prepare similar complexes from both the bidentate bis(pyrazolyl)borate ligands and tridentate tris-(pyrazolyl)borate ligands. Thus, for example, we have prepared and are exploring the chemistry of $[H_2B(pz)_2]_mMCl_n(CH_3)_p$ [2] and $[HB(pz)_3]_mMCl_n (CH_3)_p$ [3] (M=Ga, In; m+n+p=3) complexes. Similar tin(II) complexes are also under investigation [3].

Another class of anionic ligands for which both the bidentate and umbrella type tridentate forms are known are the polyphosphinoylmethanides, Aand B.

The coordination chemistry of the bidentate ligands (X=S, Se) has been explored previously by one of us [4] and has also been used by others [5]. Recently, Grim *et al.* have published the synthesis of most

members of the potentially tridentate ligands B, including unsymmetrical cases with both mixed donor atoms and mixed R groups [6].

Reported here is the synthesis and characterization of the tin(II) complexes $\{[(C_6H_5)_2PO]_3C\}_2Sn(1)$ and $\{[(C_6H_5)_2PO]_2CH\}_2Sn$ (2). Of interest to us was the structural impact of the lone pair on tin(II). In particular, tridentate coordination of these sterically bulky ligands could force a geometry in which the planes of the O₃ donor atoms of each ligand were parallel. This unusual geometry is forced by the bulky pentaphenylcyclopentadienyl ligands in $[C_5(C_6H_5)_5]_2$ Sn, the structure of which has been determined crystallographically [7]. We report here that in the solid state, as determined by X-ray crystallography, the ligands in 1 are coordinated in only a bidentate fashion.

Experimental

General procedure

All operations were carried out under a nitrogen atmosphere either by standard Schlenk techniques or in a Vacuum Atmospheres HE-493 drybox. All solvents were dried, degassed, and distilled before use. Infrared spectra were recorded on a Nicolet DX V4.56 spectrometer. The ¹H solution NMR spectra were recorded on a Bruker AM300 spectrometer using a 5 mm broad band probe. Proton chemical shifts are reported in ppm versus Me₄Si. Mass spectra were run on a Finnigan 4521 GC-mass

^{*}Author to whom correspondence should be addressed.

spectrometer or a VG 70SQ spectrometer. Clusters assigned to specific ions show appropriate isotopic patterns as calculated for the atoms present Elemental analyses were performed by Robertson Laboratory, Inc Anhydrous SnCl₂ was purchased from Aldrich Chemical Company Li{[(C_6H_5)_2PO]_2CH} [8] and Na{[(C_6H_5)_2PO]_3C} [6] were prepared as in the literature [(C_6H_5)_2PO]_2CH_2 [8] and [(C_6H_5)_2PO]_3CH [6] were prepared as outlined by Grim *et al* [6], however, we found an excess of H₂O₂ (Fisher Brand 30–35%) was necessary to ensure complete oxidation of the tripodal ligand

Bis[tris(diphenyloxophosphinoyl)methanido]tin(II){ $[(C_6H_5)_2PO]_3C$ }2Sn (1)

 $SnCl_2$ (0 15 g, 0 79 mmol) and $Na\{[(C_6H_5)_2PO]_3C\}$ (1 0 g, 1 6 mmol) were placed in a round bottomed flask THF (40 ml) was added via syringe The suspension was stirred overnight at room temperature, and the solvent evaporated under vacuum The residue was extracted with benzene (20 ml), centrifuged and filtered The benzene was removed

TABLE 1 Crystallographic data for the structural analysis of $\{[(C_6H_5)_2PO]_3C\}_2Sn$

Formula	C74H60O6P6Sn					
Molecular weight	1352					
Crystal system	trigonal					
Space group	R3c					
a (Å)	29 216(3)					
b (Å)	29 216(3)					
c (Å)	42 120(5)					
α (°)	90					
β(°́)	90					
γ (°)	120					
$V(\dot{A}^3)$	31 136					
Z	18					
Crystal size (mm)	05×04×04					
Monochromator	graphite					
Radiation	Mo Kα (0 71073 Å)					
$D_{\text{calc}} (\text{g cm}^{-3})$	1 298					
Temperature (K)	298					
2θ range (°)	4-46(-h, +k, +l)					
No reflections measured	9277					
No reflections						
symmetry independent	4731					
observed	1709					
Linear absorption coefficient	5 54					
(cm^{-1})						
Transmission factors						
max	1 432					
min	0 571					
average	0 859					
Crystal decay (%)	31% over 175 h of					
	exposure					
Corrections						
max	1 21					
average	1 09					
R _F	0 078					
R _{WF}	0 103					

TABLE 2 Positional parameters for $\{[(C_6H_5)_2PO]_3C\}_2Sn$ with e s d.s in parentheses

Atom	x	у	z	<i>B</i> (Å ²)
Sn	0 36259(5)	0 000	0 250	5 00(5)
C1	0 3965(5)	-0.0968(5)	0 2980(3)	4 6(4)
P1	0 4091(1)	-0.0358(1)	0 3118(1)	5 0(1)
P2	0 4679(1)	01283(1)	02247(1)	5 4(1)
P3	0 4258(1)	-0.1352(2)	0 3091(1)	5 7(1)
01	0 4154(3)	0 0033(3)	0 2845(2)	6 0(3)
02	0 4173(3)	0 0882(3)	02405(2)	4 8(3)
O3	0 3862(3)	-0.1919(3)	0 3101(3)	7 6(3)
C11	0 4666(5)	-0.0022(5)	0 3362(4)	5 5(4)
C12	0.5142(6)	0 0296(5)	0.3201(4)	8 2(5)
C13	0 5617(6)	0.0613(6)	0 3387(4)	77(5)
C14	0 5612(6)	0.0638(7)	0.3679(4)	92(6)
C15	0.5126(9)	0.0316(7)	0.3849(4)	10 8(6)
C16	0.4652(6)	-0.0002(6)	0.3674(3)	69(5)
C21	0.3570(4)	-0.0435(4)	0 3388(4)	45(4)
C22	0.3280(5)	-0.0861(5)	0.3576(4)	57(4)
C23	0.2909(6)	-0.0906(7)	0.3794(5)	85(6)
C24	0.2824(6)	-0.0498(6)	0.3832(5)	90(6)
C25	0.3078(5)	-0.0059(5)	0.3641(5)	7 5(5)
C26	0.3464(6)	-0.0034(6)	0 3414(4)	6 6 (5)
C31	0.4642(5)	-0.1115(6)	0.3466(4)	74(5)
C32	0 4339(6)	-0.1311(6)	0 3740(5)	96(6)
C33	0.4575(7)	-0.1200(8)	0 4049(4)	11 1(7)
C34	0.5121(8)	-0.0864(9)	0 4059(6)	14 8(8)
C35	0.5421(7)	-0.0693(7)	0 3761(5)	11 9(7)
C36	0 5152(6)	-0.0836(7)	0.3482(4)	8 9(6)
C41	0 4740(4)	-0.1270(5)	0 2798(4)	49(4)
C42	0 5029(5)	-0.0818(5)	0.2641(4)	63(5)
C43	0 5390(6)	-0.0761(6)	0 2398(5)	83(6)
C44	0 5465(6)	-0.1181(6)	0 2331(5)	89(6)
C45	0 5169(6)	-0.1634(6)	0 2489(5)	8 8(6)
C46	0.4804(5)	-0.1688(5)	0 2720(5)	74(5)
C51	0 4498(5)	0 1699(5)	0 2034(3)	54(4)
C52	0 3993(5)	0 1623(6)	0.2077(4)	8 3(5)
C53	0 3878(6)	0 2003(6)	0 1895(4)	11 9(5)
C54	0 4191(9)	02351(7)	0.1712(4)	12 6(7)
C55	0.4716(7)	02443(7)	0 1680(5)	9 9(6)
C56	0 4868(6)	02121(5)	0.1827(4)	72(5)
C61	0.5143(5)	0.1691(5)	0.2551(4)	58(4)
C62	0.5465(6)	02223(6)	02544(4)	81(6)
C63	0.5786(7)	02516(7)	0 2767(4)	10 8(6)
C64	0 5799(7)	02284(7)	0.3046(5)	11 7(6)
C65	0 5453(7)	0.1720(7)	0 3083(5)	11 8(7)
C66	0 5131(7)	0 1415(6)	0 2818(4)	8 2(6)
-		(-)		· · /

under vacuum to yield a white solid (0 94 g, 0 70 mmol, 88%), m p 239-241 °C ¹H NMR (C₆D₆) δ 8 04, 6 80 (2, 3, m, m, (C₆H₅)) ³¹P NMR (C₆D₆) δ 3 6 4 (s) The mass spectrum shows a cluster for $M^+ - C_{37}H_{30}P_3O_3$ at m/e 735 Anal Calc for C₇₄H₆₀P₆O₆Sn C, 65 84, H, 4 49 Found C, 66 04, H, 5 00%

Bis[bis(diphenyloxophosphinoyl)methanido]tin(II) { $[(C_6H_5)_2PO]_2CH$ }2Sn (2)

 $SnCl_2$ (0 11 g, 0 58 mmol) and $Li\{[(C_6H_5)_2PO]_2CH\}$ (0 52 g, 1 2 mmol) were placed in a round bottomed flask THF (30 ml) was added via syringe The suspension was stirred at room temperature for 5 h, and the solvent evaporated under vacuum. The residue was extracted with benzene (30 ml), centrifuged and filtered. The benzene was removed under vacuum to yield a white solid (0.29 g, 0.31 mmol, 53%); m.p. 174–177 °C. ¹H NMR (CDCl₃): δ 7.94, 7.33, 7.21 (2, 1, 2; m, m, m; (C₆H₅)); 4.24 (1; t; J=10 Hz; (CH)). ³¹P NMR (CDCl₃): δ 29.8 (s). The mass spectrum shows a cluster for $M^+ - C_{25}H_{21}P_2O_2$ at m/e 536.

Crystallographic analysis of $\{[(C_6H_5)_2PO]_3C\}_2Sn$ (1)

A transparent crystal of 1 was mounted in a thinwalled capillary tube on a CAD-4 diffractometer. The unit cell was determined and refined from 25 general reflections. Crystal data, data collection parameters, and results of the analysis are listed in Table 1. The structure was solved by the heavy atom method and refined with anisotropic temperature factors for the non-hydrogen atoms by using SDP (Enraf-Nonius Structure Determination Package: Frenz, B.A. (1983)). Hydrogen atoms were placed in calculated positions and not refined. Full-matrix least-squares refinements were carried out with weights $w = (\sigma^2(F) + 0.0004F^2)^{-1}$ for reflections with $I > 3\sigma(I)$. Absorption corrections were by the method of Walker and Stuart [9]. Table 2 shows the atomic parameters for 1. Bond distances and angles are given in Table 3.

TABLE 3. Selected bond distances (Å) and bond angles (°) for $\{[(C_6H_5)_2PO]_3C\}_2Sn$ with e.s.d.s in parentheses

Bond	l dist	ances								
Sn	O 1		2.089(6)		P1	C21			1.82(2)	
Sn	02	2	2.289(6)		P2	0	O2		1.506(6)	
C1	P1		1.730(9)		P2	C51			1.79(1)	
C1	P2		1.731(9)		P2	C61			1.81(1)	
C1	P3	3 1.782			P3	0	O3		1.472(7)	
P1	01		1.562(7)		P3	0	C31		1.86(1)	
P1	C1	1	1.79(1)		Р3	(C41		1.79(1)	
Bond angles										
O 1	Sn	01′	88.5(3)		O3	P3	(C41	107	.0(7)
O 1	Sn	O2	89.3(2)		C31	P3	(C41	104	.3(6)
O1	Sn	O2′	79.6(2)		P1	C1	1 (C12	116	5(2)
O 2	Sn	O2′	164.5(3)		P1	C1	1 (C16	124	(1)
P1	C1	P2	112.7(5)		P1	C2	1 (C22	125	i (1)
P1	C1	P3	129.8(5)		P1	C2	1 (C26	119	(2)
P2	C1	P3	116.5(5)		P3	C3	1 (C32	114	(1)
O 1	P 1	C11	106.6(5)		P3	C3	1 (C36	125	5(1)
O 1	P1	C21	109.7(5)		P 3	C4	1 (C42	123	3(1)
C11	P1	C21	101.9(5)		P3	C4	1 (C46	120	(1)
O2	P2	C51	103.8(6)		P2	C5:	1 (C52	119	(1)
O 2	P2	C61	108.8(5)		P2	C5	1 (C56	121	.9(9)
C51	P2	C61	106.5(6)		P2	C6	1 (C62	127	/(1)
O3	P3	C31	112.7(6)		P2	C6	1	C66	114	(2)

The complex $\{[(C_6H_5)_2PO]_3C\}_2Sn(1)$ was prepared from tin(II) chloride as shown in eqn. (1).

It is soluble in aromatic solvents and in halocarbon solvents, but is not soluble in saturated hydrocarbon solvents. Complex 1 is a high melting air stable solid and only slowly decomposes in air in solution.

The solid state structure of 1 has been determined by X-ray crystallography. An ORTEP drawing of the molecule, with the phenyl groups omitted for clarity, is shown in Fig. 1. The molecule crystallizes in the space group R3c with a crystallographically imposed two-fold rotational axis.

Both potentially tridentate $[(C_6H_5)_2PO]_3C$ -ligands are coordinated to the tin atom in a bidentate fashion. The third P-O group on each ligand is flipped back and away from the tin atom leading to trigonal planar geometry about the methine carbon atoms, C(1). The sum of the three P-C(1)-P bond angles is 359° with the lowest angle of 112.7(5)° formed by the atoms in the chelate rings. The C-P bond distances within the chelate rings are short (1.730(9) and 1.731(9) Å) when compared to the distance for the uncoordinated phosphoryl group (1.782(9) Å) and the average of the P-C(phenyl) distances (1.81(1)

Fig. 1. ORTEP drawing of $\{[(C_6H_5)_2PO]_3C\}_2Sn$. The phenyl groups have been omitted for clarity.

portion of the ligand

The coordination geometry about tin is a pseudo trigonal bipyramid with one equatorial site filled by the lone pair The two-fold rotational axis is coincident with this empty equatorial site Each phosphinoylmethanide ligand occupies an axial and equatorial site The bite angle of the ligands coordinated to the tin(II) atom is 89 3(2)°, as expected for a trigonal bipyramid The equatorial O(1)-Sn-O(1')bond angle is considerably compressed from the 120° angle of a trigonal bipyramid to 88 5(3)° The axial O(2)-Sn-O(2') bond angle (164 5(3)°) is also compressed, but to a lesser extent The axial Sn-O(2)bond lengths are considerably longer (2 289(6) Å) than the equatorial Sn-O(1) bond lengths (2.089(6)) Å) Compression of the equatorial bond angle and shorter equatorial bond distances are a general feature of four-coordinate, pseudo trigonal bipyramidal tin(II) structures [11]

Bidentate coordination of the potentially tridentate $[(C_6H_5)_2PO]_3C$ -ligand appears to be general [12] Presumably, steric crowding caused by the six phenyl rings prevents tridentate coordination Also, the planarity at the methine carbon atom would introduce considerable strain if the ligand were tridentate The sulfur analog, $\{[(C_6H_5)_2PS]_3C\}^-$, does act as either a tridentate [13] or bidentate [14] ligand depending on the metal system, but the longer metal–S bonds help alleviate the steric problems Bidentate coordination in 1 might also have been anticipated due to the fact that tin(II) has been found to generally form three- and four-coordinate complexes [15]

The complex $\{[(C_6H_5)_2PO]_2CH\}_2Sn(2)$ is prepared as shown in eqn (2)

This complex has similar chemical and physical properties to 1 and presumably has a similar structure

Acknowledgements

The authors acknowledge the NSF (Grant CHE-8411172) and NIH (Grant RR-02425) for support of NMR equipment, and the NIH (Grant RR-02849) for support of mass spectrometry equipment

References

- (a) S Trofimenko, Acc Chem Res, 4 (1971) 17, (b) A Shaver, J Organomet Chem Libr, 3 (1976) 157, (c) A Shaver, in G Wilkinson (ed), Comprehensive Coordination Chemistry, Vol 2, Pergamon, New York, 1987, p 245
- 2 (a) D L Reger, S J Knox and L Lebioda, Inorg Chem, 28 (1989) 3092, (b) D L Reger, S J Knox and L Lebioda, Organometallics, 9 (1990) 2218, (c) D L Reger, S J Knox, A L Rheingold and B S Haggerty, Organometallics, 9 (1990) 2581
- 3 D L Reger, S S Mason and S J Knox, unpublished results
- 4 A Davison and D L Reger, Inorg Chem, 10 (1971) 1967
- 5 J Browning, G W Bushnell, K. R Dixon and A Pidcock, Inorg Chem, 22 (1983) 2227
- 6 S O Grim, S A Sangokoya, I J Colquhoun, W McFarlane and R K Khanna, *Inorg Chem*, 25 (1986) 2699
- 7 M J Heeg and J J Zuckerman, J Am Chem Soc, 106 (1984) 4259
- 8 K Issleib and H P Abicht, J Prakt Chem, 312 (1970) 456
- 9 N Walker and D Stuart, Acta Crystallogr, Sect A, 39 (1983) 159
- 10 J C J Bart, J Chem. Soc B, (1969) 350
- (a) P F R Ewings, P G Harrison and T J King, J Chem Soc, Dalton Trans, (1975) 1455 (b) E Hough and D G Nicholson, J Chem Soc, Dalton Trans, (1976) 1782, (c) H H Karsch, A Appelt and G Muller, Organometallics, 5 (1986) 1664, (d) A H Cowley, R L Geerts, C M Nunn and C J Carrano, J Organomet Chem, 341 (1988) C27, (e) P G Harrison and E W Thornton, J Chem Soc, Dalton Trans, (1975) 1722, (f) P F R Ewings, P G Harrison and T J King, J Chem Soc, Dalton Trans, (1976) 1399, (g) J Potenza and D Mastropaolo, Acta Crystallogr, Sect B, 29 (1973) 1830
- 12 (a) S O Grim and S A Sangokoya, J Chem Soc, Chem Commun, (1984) 1599, (b) S O Grim, S A Sangokoya, E Delaubenfels, I J Colquhoun and W McFarlane, Phosphorus Sulfur, 38 (1988) 79
- 13 (a) S O Grim, P H Smith, S Nittolo, H L Ammon, L C Satek, S A Sangokoya, R K. Khanna, I J Colquhoun, W McFarlane and J R Holden, *Inorg Chem*, 24 (1985) 2889, (b) S O Grim, *Phosphorus Sulfur*, 18 (1983) 283
- 14 J Browning, K A Beveridge, G W Bushnell and K R Dixon, Inorg Chem, 25 (1986) 1987
- 15 (a) P G Harrison, in G Wilkinson, R D Gillard and J A McCleverty (eds), Comprehensive Coordination Chemistry, Vol 3, Pergamon, Oxford, 1987, pp 216-223, (b) J A Zubieta and J J Zuckerman Prog Inorg Chem, 24 (1978) 251